

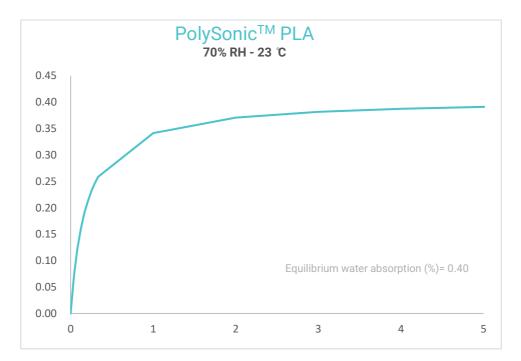
Innovators in 3D printing

Techanical Data Sheet

PolySonic™ PLA

www.polymaker.com V5.3

PolySonic[™] PLA is a revolutionary high-speed 3D printing filament, the ultimate game-changer in additive manufacturing. With its lightning-fast extrusion rate, cutting-edge precision, and exceptional layer adhesion you can ramp up the speed of your 3D printer and witness new levels of productivity. Accelerate your workflow without compromising on strength or quality.


PHYSICAL PROPERTIES

Property	Testing Method	Typical Value
Density	ISO1183, GB/T1033	1.23 g/cm ³ at 21.5°C
Melt index	210°C, 2.16 kg	15.4 g/10min
Light transmission	N/A	N/A
Flame retardancy	N/A	N/A

CHEMICAL RESISTANCE DATA

Property	Testing Method
Effect of weak acids	Not resistant
Effect of strong acids	Not resistant
Effect of weak alkalis	Not resistant
Effect of strong alkalis	Not resistant
Effect of organic solvent	No data available
Effect of oils and grease	No data available

MOISTURE ABSORPTION

THERMAL PROPERTIES

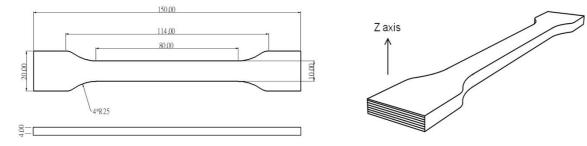
Property	Testing Method	Typical Value
Glass transition temperature	DSC, 10°C/min	59 °C
Melting temperature	DSC, 10°C/min	164 °C
Crystallization temperature	DSC, 10°C/min	96 °C
Decomposition temperature	TGA, 20°C/min	370 °C
Vicat softening temperature	ISO 306, GB/T 1633	61 °C
Heat deflection temperature	ISO 75 1.8MPa	52 °C
Heat deflection temperature	ISO 75 0.45MPa	53 °C
Thermal conductivity	N/A	N/A
Heat shrinkage rate	N/A	N/A

* Based on 0.4 mm nozzle and 0.2mm layer thickness. Classic printing speed = 46.7mm/s, printing temperature = 210 °C

Property	Testing Method	Typical Value
Young's modulus (X-Y)	ISO 527, GB/T 1040	2878.3 ± 74.3 MPa
Young's modulus (Z)		2689.8 ± 92.0 MPa
Tensile strength (X-Y)	ISO 527, GB/T 1040	46.0 ± 0.5 MPa
Tensile strength (Z)		37.3 ± 0.7 MPa
Elongation at break (X-Y)	ISO 527, GB/T 1040	21.5 ± 5.02 %
Elongation at break (Z)	130 327, GB/1 1040	4.2 ± 2.0 %
Bending modulus (X-Y)	ISO 178, GB/T 9341	2868.2 ± 78.4 MPa
Bending modulus (Z)	130 176, GD/1 9341	N/A
Bending strength (X-Y)	ISO 178, GB/T 9341	76.5 ± 0.9 MPa
Bending strength (Z)	130 178, GB/ 1 9341	N/A
Charpy impact strength (X-Y)	ISO 179, GB/T 1043	6.1 ± 0.6 kJ/m ²
Charpy impact strength (Z)	130 179, 30/1 1043	N/A

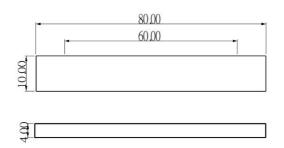
* Based on 0.4 mm nozzle and 0.2mm layer thickness. High printing speed = 300mm/s, printing temperature = 230 °C

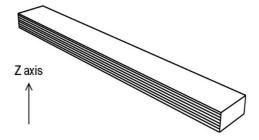
Property	Testing Method	Typical Value
Young's modulus (X-Y)		2649.7 ± 78.3 MPa
Young's modulus (Z)	ISO 527, GB/T 1040	2433.4 ± 79.4 MPa
Tensile strength (X-Y)	ISO 527, GB/T 1040	43.9 ± 0.4 MPa
Tensile strength (Z)		32.4 ± 0.4 MPa
Elongation at break (X-Y)	ISO 527, GB/T 1040	15.1 ± 3.9 %
Elongation at break (Z)	130 327, GB/1 1040	3.3 ± 0.5 %
Bending modulus (X-Y)	ISO 178, GB/T 9341	2797.9 ± 40.7 MPa
Bending modulus (Z)	130 178, GB/1 9341	N/A
Bending strength (X-Y)	ISO 178, GB/T 9341	71.4 ± 0.6 MPa
Bending strength (Z)	130 176, GD/1 9341	N/A
Charpy impact strength (X-Y)	ISO 179, GB/T 1043	$5.0 \pm 0.5 \text{ kJ/m}^2$
Charpy impact strength (Z)	130 179, GD/1 1043	N/A


RECOMMENDED PRINTING CONDITIONS

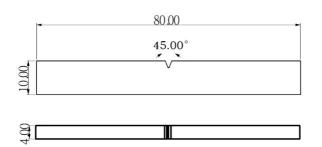
* Based on 0.4 mm nozzle and Simplify 3D v.4.0. Printing conditions may vary with different nozzle diameters

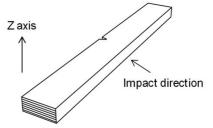
Parameter	
Nozzle temperature	Classic :190-210 °C
	High-speed: 210-230 °C
Build surface treatment	Glue when needed
Build plate temperature	30 - 60 (°C)
Cooling fan	100%
Printing speed	Classic :50-100mm/s
	High-speed: 100-300mm/s
Retraction distance	0.5 - 3 (mm)
Retraction speed	30 - 60 (mm/s)
Closure Chamber	No needed
Recommended support material	PolySupport [™] and PolyDissolve [™] S1
Drying setting	55°C for 6h


TENSILE TESTING SPECIMEN


ISO 527, GB/T 1040

FLEXURAL TESTING SPECIMEN


ISO 178, GB/T 9341



IMPACT TESTING SPECIMEN

ISO 179, GB/T 1043

HOW TO MAKE SPECIMENS

All specimens were conditioned at room temperature for 24h prior to testing	
Printing temperature	210 °C/230 °C
Bed temperature	25 °C
Shell	2
Top & bottom layer	3
Infill	100 %
Environmental temperature	25 °C
Cooling fan	ON

*All specimens were conditioned at room temperature for 24h prior to testing

DISCLAIMER:

The typical values presented in this data sheet are intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. Actual values may vary significantly with printing conditions. End- use performance of printed parts depends not only on materials, but also on part design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice.

Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/ recycling practices of Polymaker materials for the intended application. Polymaker makes no warranty of any kind, unless announced separately, to the fitness for any use or application. Polymaker shall not be made liable for any damage, injury or loss induced from the use of Polymaker materials in any application.